-
AI可以跨过GitHub危机吗?
所属栏目:[大数据] 日期:2022-06-09 热度:158
机器学习如今正在面临一些危机,将会阻碍该领域的快速发展。这些危机源于一个更广泛的困境,即科学研究的可重复性。根据《自然》杂志对 1,500 名科学家进行的一项调查,70% 的研究人员曾尝试复制其他科学家的实验但未能获得成功,50% 以上的研究人员未能复[详细]
-
数据科学中数据收集的终极指南
所属栏目:[大数据] 日期:2022-06-09 热度:187
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
大数据和道路安全如何携手共进?
所属栏目:[大数据] 日期:2022-06-09 热度:114
大数据现在被广泛用于预测交通和避免事故 道路交通事故仍然是一个主要问题,因为全球每年有超过 125 万人丧生。根据世界卫生组织的一份报告,它仍然是 15 至 29 岁人群的主要死因。 世卫组织已承诺采取一项强有力的举措,到 2022 年减少道路交通事故造成的[详细]
-
数据中台虚火?数据管控体系应该这么搭
所属栏目:[大数据] 日期:2022-06-09 热度:178
大数据、数据治理、数据湖以及被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,行业[详细]
-
如何采用大数据技术帮助制定数字化策略?
所属栏目:[大数据] 日期:2022-06-09 热度:198
数字化采用被定义为通过优化遗留系统和利用新技术来重塑企业。近年来,大数据一直是数字化采用的中心。这就是全球各地方的公司去年在大数据技术上花费1620亿美元以上的原因。 整个过程远不止这些,但采用新技术并将其集成到业务工作流程中是关键。为了简化[详细]
-
反映数据质量的八个指标
所属栏目:[大数据] 日期:2022-06-09 热度:157
数据的质量直接影响着数据的价值,并且还影响着数据分析的结果以及我们依此做出的决策的质量。质量不高的数据不仅仅是数据本身的问题,还会影响企业的经营管理决策;数据错误还不如没有数据,因为没有数据时,我们会基于经验和常识做出不见得是错误的决策,[详细]
-
价值变现的关键是组织优化和数据治理
所属栏目:[大数据] 日期:2022-06-09 热度:125
大数据、数据治理、数据湖以及目前被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,[详细]
-
为何大厂选择减人而不是降薪?
所属栏目:[大数据] 日期:2022-06-09 热度:154
为何大厂选择减人而不是降薪? 01 前2天写了大厂裁人和招人为何同时进行的原理,后台也收到了很多有趣的私信,其中有一个问题让我觉得特别有意思。 问的是大厂为控制成本他能理解,但同样是控制成本,裁掉30%的人,以及不裁人集体降薪30%,区别是啥? 为什[详细]
-
终于有人把数据的属性讲明白了
所属栏目:[大数据] 日期:2022-06-09 热度:164
终于有人把数据的属性讲明白了 1.结构化与非结构化数据 某些数据集具有很好的结构性,就像数据库中的数据表或电子表程序中一样。而其他的数据以更多样的形式记录着有关世界状况的信息。它们可能是像维基百科这样包含图像和超级链接的文本语料库,也可能是[详细]
-
一文读懂元数据管理!
所属栏目:[大数据] 日期:2022-06-09 热度:153
一文读懂元数据管理! 一、什么是元数据? 元数据(metadata)是关于数据的组织、数据域及其关系的信息,简言之,元数据就是描述数据的数据。概念总是生涩,对于没有IT背景的人来说比较抽象,不容易理解,下面举几个例子。 示例1:歌词中的元数据 有一首很[详细]
-
大数据如何改变制造业
所属栏目:[大数据] 日期:2022-06-09 热度:168
区块链如何改变制造业 由于该领域的独家技术突破,制造业正处于一场革命之中。 制造业的大数据正在实现明智的战略,并制定未来的路线图。 制造业是在过去几十年里经历了巨大变化的行业之一。除了简单地自动化相关流程之外,制造业还利用技术实现各种其他目[详细]
-
如何使云原生运维化繁为简
所属栏目:[大数据] 日期:2022-06-08 热度:69
云计算带来了集约化、效率、弹性与业务敏捷的同时,对云上运维提出了前所未有的挑战。如何面对新技术趋势的挑战,构建面向云时代的智能监测平台,让云上应用获得更好的保障,是如今摆在每一个企业面前的一道难题。 在日前的【TTalk】系列活动第八期中,51C[详细]
-
如何借助Python创建机器学习模型
所属栏目:[大数据] 日期:2022-06-08 热度:162
你是否会遇到这样的场景,当你训练了一个新模型,有时你不想费心编写 Flask Code(Python的web 框架)或者将模型容器化并在 Docker 中运行它,就想通过 API 立即使用这个模型? 如果你有这个需求,你肯定想了解MLServer。它是一个基于Python的推理服务器,[详细]
-
转向未来的AI自动化测试工具
所属栏目:[大数据] 日期:2022-06-08 热度:120
近年来,自动化测试已经发生了重大的迭代。它在很大程度上协助QA团队减少了人为错误的可能。虽然目前有许多工具可以被用于自动化测试,但合适的工具一直是自动化测试成败与否的关键。同时,随着人工智能、机器学习和神经网络在各个领域的广泛运用,面向人[详细]
-
微型机器学习有望让深度学习嵌入微处理器
所属栏目:[大数据] 日期:2022-06-08 热度:83
深度学习模型最初的成功归功于拥有大量内存和GPU集群的大型服务器。深度学习的前景催生了一个为深度神经网络提供云计算服务的行业。因此,在几乎无限的云资源上运行的大型神经网络变得非常流行,这对于具有充足预算的科技公司尤其如此。 但与此同时,近年[详细]
-
人工智能平台计划中的质量工程设计
所属栏目:[大数据] 日期:2022-06-08 热度:184
我们正处在人工智能的黄金时代。人工智能方案的采用使得企业更具创造性、竞争力和快速响应能力。软件即服务(software-as-a-service,SaaS)模式,加上云技术的进步,使软件生产和消费过程越来越成熟。 普遍存在的一个事实是,大多数组织更喜欢购买现成的[详细]
-
开启元宇宙的数字人之行
所属栏目:[大数据] 日期:2022-06-08 热度:156
作为构建元宇宙内容的基石,数字人是最早可落地且可持续发展的元宇宙细分成熟场景,目前,虚拟偶像、电商带货、电视主持、虚拟主播等商业应用已被大众认可。在元宇宙世界中,最核心的内容之一非数字人莫属,因为数字人不光是真实世界人类在元宇宙中的化身[详细]
-
使用机器学习重塑视频中的人脸
所属栏目:[大数据] 日期:2022-06-08 热度:146
来自于中、英两国的一项合作研究设计出了一种在视频中重塑面孔的新方法。该技术可以扩大和缩小面部结构,同时还具有高度一致性,并且没有人工修剪的痕迹 一般而言,这种面部结构的转化通过传统的 CGI 方法来实现,而传统的 CGI 方法依托详细且昂贵的运动封[详细]
-
由于智能数据库的自助式机器学习
所属栏目:[大数据] 日期:2022-06-08 热度:176
由于智能数据库的自助式机器学习 1.如何成为一个IDO? IDO(insight-driven organization)指洞察力驱动(以信息为导向)的组织。要成为一个IDO,首先需要数据以及操作和分析数据的工具;其次是具有适当经验的数据分析师或数据科学家;最后还需要找到一种技术或者[详细]
-
元宇宙在艺术领域的探索
所属栏目:[大数据] 日期:2022-06-08 热度:152
在元宇宙概念火爆的当下,各行业均开始了在这片富地中的探索。而在诸多行业之中,艺术行业与元宇宙的融合互促效果尤为明显。在不久前MetaCon元宇宙技术大会上,触角科技有限公司联合创始人、大有不言文化有限公司创始人谷强为我们带来了《元宇宙在艺术行业[详细]
-
美团图神经网络训练架构的实践和探索
所属栏目:[大数据] 日期:2022-06-08 热度:98
美团搜索与NLP团队在图神经网络的长期落地实践中,基于业务实际场景,自主设计研发了图神经网络框架Tulong,以及配套的图学习平台,提升了模型的规模和迭代效率。 1. 前言 万物之间皆有联系。图作为一种通用的数据结构,可以很好地描述实体与实体之间的关[详细]
-
几时使用机器学习
所属栏目:[大数据] 日期:2022-06-08 热度:54
为什么要探讨这个话题 探讨这个话题的本质原因是来源于为客户提供数据战略咨询服务时的思考,很多客户的痛点与诉求看似可以用机器学习解决,但实际上却充满风险,所以究竟机器学习什么时候该用,什么时候不该用,便成为了思考的对象。 机器学习起源于学术[详细]
-
如何让程序员更简单使用机器学习
所属栏目:[大数据] 日期:2022-06-08 热度:91
一直以来,人们试图手工编写算法来理解人工生成的内容,但是成功率极低。例如,计算机很难掌握图像的语义内容。对于这类问题,AI科学家已经尝试通过分析汽车、猫、外套等低级像素来解决,但结果并不理想。尽管颜色直方图和特征检测器在一定程度上发挥了作[详细]
-
如何建造一支高效率的人工智能团队?
所属栏目:[大数据] 日期:2022-06-08 热度:65
本文将介绍把机器学习基础设施、员工和流程融合的方式,以实现适用于企业的MLOps(面向人工智能系统的运维管理)。本文希望对旨在以高效人工智能团队开发强大的人工智能/机器学习(AI/ML)项目的经理和主管提供启发。 本文的经验来自Provectus公司的人工智能团[详细]
-
从开始懂互联网到懂用户,谷歌这次都押了哪些宝?
所属栏目:[大数据] 日期:2022-06-08 热度:77
谷歌 I/O 大会如约而至。谷歌 I/O 2022 大会开幕式上,谷歌 CEO Sundar Pichai 发表了长达 2 小时的以知识和计算为关键词的主题演讲。这次演讲在勾勒谷歌长期发展愿景的同时,也在某种程度上描绘后疫情时代的互联网技术的演进方向。 搜索再定义:Anyway、A[详细]