-
解析TCP四次握手断开连接
所属栏目:[语言] 日期:2022-07-11 热度:142
建立连接非常重要,它是数据正确传输的前提;断开连接同样重要,它让计算机释放不再使用的资源。如果连接不能正常断开,不仅会造成数据传输错误,还会导致套接字不能关闭,持续占用资源,如果并发量高,服务器压力堪忧。 建立连接后,客户端和服务器都处于[详细]
-
再聊聊UDP和TCP
所属栏目:[语言] 日期:2022-07-11 热度:128
TCP 是面向连接的传输协议,建立连接时要经过三次握手,断开连接时要经过四次握手,中间传输数据时也要回复 ACK 包确认,多种机制保证了数据能够正确到达,不会丢失或出错。 UDP 是非连接的传输协议,没有建立连接和断开连接的过程,它只是简单地把数据丢[详细]
-
介于UDP的服务器端和客户端
所属栏目:[语言] 日期:2022-07-11 热度:105
前面的文章中我们给出了几个 TCP 的例子,对于 UDP 而言,只要能理解前面的内容,实现并非难事。 UDP中的服务器端和客户端没有连接 UDP 不像 TCP,无需在连接状态下交换数据,因此基于 UDP 的服务器端和客户端也无需经过连接过程。也就是说,不必调用 list[详细]
-
Java抽象 abstract 类
所属栏目:[语言] 日期:2022-07-11 热度:174
Java 语言提供了两种类,分别为具体类和抽象类。前面学习接触的类都是具体类。这一节介绍一下抽象类。 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体[详细]
-
Java接口 Interface 的定义和实现
所属栏目:[语言] 日期:2022-07-11 热度:90
抽象类是从多个类中抽象出来的模板,如果将这种抽象进行的更彻底,则可以提炼出一种更加特殊的抽象类接口(Interface)。接口是 Java 中最重要的概念之一,它可以被理解为一种特殊的类,不同的是接口的成员没有执行体,是由全局常量和公共的抽象方法所组成[详细]
-
Java内部类是什么
所属栏目:[语言] 日期:2022-07-11 热度:193
在类内部可定义成员变量和方法,且在类内部也可以定义另一个类。如果在类 Outer 的内部再定义一个类 Inner,此时类 Inner 就称为内部类(或称为嵌套类),而类 Outer 则称为外部类(或称为宿主类)。 内部类可以很好地实现隐藏,一般的非内部类是不允许有[详细]
-
Java实例内部类
所属栏目:[语言] 日期:2022-07-11 热度:96
实例内部类是指没有用 static 修饰的内部类,有的地方也称为非静态内部类。示例代码如下: public class Outer { class Inner { // 实例内部类 } } 上述示例中的 Inner 类就是实例内部类。实例内部类有如下特点。 1)在外部类的静态方法和外部类以外的其他[详细]
-
Java静态内部类
所属栏目:[语言] 日期:2022-07-11 热度:85
静态内部类是指使用 static 修饰的内部类。示例代码如下: public class Outer { static class Inner { // 静态内部类 } } 上述示例中的 Inner 类就是静态内部类。静态内部类有如下特点。 1)在创建静态内部类的实例时,不需要创建外部类的实例。 public c[详细]
-
Java局部内部类
所属栏目:[语言] 日期:2022-07-11 热度:59
局部内部类是指在一个方法中定义的内部类。示例代码如下: public class Test { public void method() { class Inner { // 局部内部类 } } } 局部内部类有如下特点: 1)局部内部类与局部变量一样,不能使用访问控制修饰符(public、private 和 protected[详细]
-
Java匿名类 Java匿名内部类
所属栏目:[语言] 日期:2022-07-11 热度:184
匿名类是指没有类名的内部类,必须在创建时使用 new 语句来声明类。其语法形式如下: new 类或接口() { // 类的主体 }; 这种形式的 new 语句声明一个新的匿名类,它对一个给定的类进行扩展,或者实现一个给定的接口。使用匿名类可使代码更加简洁、紧凑,模[详细]
-
Java8新特性 Effectively final
所属栏目:[语言] 日期:2022-07-11 热度:76
Java 中局部内部类和匿名内部类访问的局部变量必须由 final 修饰,以保证内部类和外部类的数据一致性。但从 Java 8 开始,我们可以不加 final 修饰符,由系统默认添加,当然这在 Java 8 以前的版本是不允许的。Java 将这个功能称为 Effectively final 功能[详细]
-
Java Lambda表达式的使用
所属栏目:[语言] 日期:2022-07-11 热度:100
在《Java Lambda表达式》和《Java Lambda表达式的3种简写方式》一节中我们了解了 Java Lambda 的概念并可以在匿名类的场合使用 Lambda 语法进行简单替换。本节主要介绍在 Java 中如何使用 Lambda 表达式。 作为参数使用Lambda表达式 Lambda 表达式一种常见[详细]
-
AOE网求关键路径详解 包括C语言实现代码
所属栏目:[语言] 日期:2022-07-11 热度:162
在学习拓扑排序一节时讲到拓扑排序只适用于 AOV 网,本节所介绍的求关键路径针对的是和 AOV 网相近的 AOE 网。 什么是AOE网 AOE 网是在 AOV 网的基础上,其中每一个边都具有各自的权值,是一个有向无环网。其中权值表示活动持续的时间。 就是一个 AOE 网,[详细]
-
数据构架之动态内存管理机制
所属栏目:[语言] 日期:2022-07-11 热度:185
通过前面的学习,介绍很多具体的数据结构的存储以及遍历的方式,过程中只是很表面地介绍了数据的存储,而没有涉及到更底层的有关的存储空间的分配与回收,从本节开始将做更深入地介绍。 在使用早期的计算机上编写程序时,有关数据存储在什么位置等这样的问[详细]
-
边界标识法管制动态内存
所属栏目:[语言] 日期:2022-07-11 热度:176
本节介绍一种解决系统中内存碎片过多而无法使用的方法边界标识法。 每个结点中包含 3 个区域,head 域、foot 域 和 space 域: space 域表示为该内存块的大小,它的大小通过 head 域中的 size 值表示。 head 域中包含有 4 部分:llink 和 rlink 分别表示指[详细]
-
伙伴系统管控动态内存
所属栏目:[语言] 日期:2022-07-11 热度:173
前面介绍了系统在分配与回收存储空间时采取的边界标识法。本节再介绍一种管理存储空间的方法伙伴系统。 伙伴系统本身是一种动态管理内存的方法,和边界标识法的区别是:使用伙伴系统管理的存储空间,无论是空闲块还是占用块,大小都是 2 的 n 次幂(n 为正[详细]
-
无用单元采集 垃圾回收机制
所属栏目:[语言] 日期:2022-07-11 热度:183
通过前几节对可利用空间表进行动态存储管理的介绍,运行机制可以概括为:当用户发出申请空间的请求后,系统向用户分配内存;用户运行结束释放存储空间后,系统回收内存。这两部操作都是在用户给出明确的指令后,系统对存储空间进行有效地分配和回收。 但是[详细]
-
表插入排行算法
所属栏目:[语言] 日期:2022-07-10 热度:149
前面章节中所介绍到的三种插入排序算法,其基本结构都采用数组的形式进行存储,因而无法避免排序过程中产生的数据移动的问题。如果想要从根本上解决只能改变数据的存储结构,改用链表存储。 表插入排序,即使用链表的存储结构对数据进行插入排序。在对记录[详细]
-
冒泡排序 起泡排序 算法与其C语言实现
所属栏目:[语言] 日期:2022-07-10 热度:195
起泡排序,别名冒泡排序,该算法的核心思想是将无序表中的所有记录,通过两两比较关键字,得出升序序列或者降序序列。 对无序表的第一次起泡排序,最终将无序表中的最大值 97 找到并存储在表的最后一个位置。具体实现过程为: 首先 49 和 38 比较,由于 38[详细]
-
简单选择排序算法 C语言解析版
所属栏目:[语言] 日期:2022-07-10 热度:124
该算法的实现思想为:对于具有 n 个记录的无序表遍历 n-1 次,第 i 次从无序表中第 i 个记录开始,找出后序关键字中最小的记录,然后放置在第 i 的位置上。 例如对无序表{56,12,80,91,20}采用简单选择排序算法进行排序,具体过程为: 第一次遍历时,从[详细]
-
堆排序算法C语言细说
所属栏目:[语言] 日期:2022-07-10 热度:139
在学习堆排序之前,首先需要了解堆的含义:在含有 n 个元素的序列中,如果序列中的元素满足下面其中一种关系时,此序列可以称之为堆。 ki k2i 且 ki k2i+1(在 n 个记录的范围内,第 i 个关键字的值小于第 2*i 个关键字,同时也小于第 2*i+1 个关键字) ki[详细]
-
何为外部排序算法
所属栏目:[语言] 日期:2022-07-10 热度:202
上一章介绍了很多排序算法,插入排序、选择排序、归并排序等等,这些算法都属于内部排序算法,即排序的整个过程只是在内存中完成。而当待排序的文件比内存的可使用容量还大时,文件无法一次性放到内存中进行排序,需要借助于外部存储器(例如硬盘、U盘、光[详细]
-
多路平衡归并排序 胜者树 败者树 算法细说
所属栏目:[语言] 日期:2022-07-10 热度:190
通过上一节对于外部排序的介绍得知:对于外部排序算法来说,其直接影响算法效率的因素为读写外存的次数,即次数越多,算法效率越低。若想提高算法的效率,即减少算法运行过程中读写外存的次数,可以增加 k 路平衡归并中的 k 值。 但是经过计算得知,如果毫[详细]
-
置换选择排序算法说明
所属栏目:[语言] 日期:2022-07-10 热度:75
上一节介绍了增加 k-路归并排序中的 k 值来提高外部排序效率的方法,而除此之外,还有另外一条路可走,即减少初始归并段的个数,也就是本章第一节中提到的减小 m 的值。 m 的求值方法为:m=n/l(n 表示为外部文件中的记录数,l 表示初始归并段中包含的记录[详细]
-
最佳归并树解析
所属栏目:[语言] 日期:2022-07-10 热度:98
通过上一节对置换-选择排序算法的学习了解到,通过对初始文件进行置换选择排序能够获得多个长度不等的初始归并段,相比于按照内存容量大小对初始文件进行等分,大大减少了初始归并段的数量,从而提高了外部排序的整体效率。 本节带领大家思考一个问题:无[详细]