加入收藏 | 设为首页 | 会员中心 | 我要投稿 聊城站长网 (https://www.0635zz.com/)- 智能语音交互、行业智能、AI应用、云计算、5G!
当前位置: 首页 > 站长资讯 > 动态 > 正文

问鼎化学诺奖的量子点,或将用在你家电视上

发布时间:2023-10-05 10:54:40 所属栏目:动态 来源:
导读:2023年诺贝尔化学奖获得者已被瑞典皇家科学院宣布为美国科学家蒙吉·巴文迪(Moungi G. Bawendi,美国麻省理工学院)、路易斯·布鲁斯(Louis E. Brus,美国哥伦比亚大学)和俄罗斯科学家阿列克谢&middo
2023年诺贝尔化学奖获得者已被瑞典皇家科学院宣布为美国科学家蒙吉·巴文迪(Moungi G. Bawendi,美国麻省理工学院)、路易斯·布鲁斯(Louis E. Brus,美国哥伦比亚大学)和俄罗斯科学家阿列克谢·埃基莫夫(Alexei I. Ekimov,美国纳米晶体科技公司),以表彰他们在量子点领域所做出的发现和研究。

黑暗中,在紫外灯的照射下,一排试管中的溶液,发出从蓝到红、摄人心魄的纯粹光芒。那么,什么是量子点呢?为什么量子点能发出如此绚丽的色彩?

无论是一块石头还是小到一颗砂砾,都是由原子或分子组成的。一颗砂砾与一块石头相比,体积上相差甚远,而各项物理化学性质都是近乎相同的。但是,当材料的大小进入纳米尺度时,事情开始发生变化。

“量子点有许多迷人而不寻常的特性。重要的是,它们根据不同的大小会具有不同的颜色。”诺贝尔化学委员会主席Johan Åqvist说。

我们所说的量子点,又称半导体纳米晶,是由数百或数千原子组成、尺寸一般小于20纳米的半导体晶体颗粒。半导体材料是信息社会的基石,一般是由具有重复单元结构的晶体组成,其半导体性质是由重复单元的类型所决定。由于量子点的尺寸进入纳米尺度,半导体纳米晶体内部重复单元的数目有限,导致材料的电子结构发生很大的变化。Brus和Ekimov等人将这一尺寸相关的现象描述为量子限域效应(quantum confinement effect):量子点的电子结构由本体材料(宏观晶体)的连续能带变为分立的能级,带隙随着晶体尺寸的变小逐渐增大。同时,由于量子点的尺寸通常小于激子(电子-空穴对)玻尔半径,光激发产生的激子被牢牢束缚在每颗量子点中,从而实现高效率的辐射复合。以目前研究最广泛的硒化镉(CdSe)量子点为例,其本体硒化镉为黑色粉末,通常并没有荧光效应;而溶液合成的硒化镉量子点,可以通过尺寸改变,实现由蓝光到红光的多种颜色发光。

胶体量子点通常采用高温热分解有机金属前躯体的方法合成。简单来讲就是将阴离子前驱体快速注入到含有阳离子前驱体的高温反应溶液中,因此也被称为高温热注入法。这个合成方法的反应机理就是反应前驱体浓度瞬间超过饱和、超过成核的临界点,然后迅速获得单分散的晶核,将量子点的成核过程和生长过程分开,实现了量子点的快速成核和缓慢生长。

有机荧光染料的荧光寿命一般仅为几纳秒。而具有直接带隙的量子点的荧光寿命可持续数十纳秒,具有准直接带隙的量子点如硅量子点的荧光寿命则可持续超过100微秒。这样在光激发情况下,大多数的自发荧光已经衰变,而量子点的荧光仍然存在,此时即可得到无背景干扰的荧光信号。

由于现阶段的量子点包含着丰富的量子物理化学性质,已经吸引了很多海内外的学者前赴后继地投身其中。经过基础研究的不懈探索,形成了很多重要的前沿技术。例如,量子点高效稳定的发光特性,使其成为一类经典的荧光标记材料,在生物检测和医学成像领域,被广泛应用于科学研究和体外检测中,推动了成像和检测技术的发展。另一方面,量子点具有窄发射和发光色彩可调的特性,使其成为显示领域的新一代发光材料体系。同时,量子点在太阳能电池、红外探测成像、光催化、量子光源等领域的应用也获得长足的发展。

其中,最具代表性的一项应用是:将量子点优异的光致发光性能和另一项诺奖成果—GaN基蓝光LED的珠联璧合,实现量子点色彩增强液晶显示技术。该技术中,量子点可以将LED背光源的色彩转化为高纯度的红、绿、蓝三基色,实现了超越传统液晶显示与有机LED显示的广色域。

除了目前已经商业化的量子点液晶显示以外,量子点在未来显示、光源技术和新能源等领域都有巨大的应用潜力,例如:

(1)未来显示:随着电子设备微型化、智能化和柔性化的发展,智能穿戴式设备正在蓬勃发展。虚拟现实应用要求近眼显示设备具有高色域、高刷新率和超高分辨率等特性,量子点电致发光(QLED)技术有望同时具备上述特性。随着量子点和其他相关半导体材料的快速发展,满足商用性能标准的QLED器件有望在未来3~5年内实现,并在未来显示中获得应用。

(2)光伏发电:太阳能作为公认的清洁能源,将是下一代能源革命的主导技术。目前,科研界和产业界正全力提高光伏电池的光电转换效率和使用可靠性。以PbS为代表的量子点材料由于其在红外波段的带隙可调性,在下一代溶液工艺太阳能电池方面具有巨大潜力。将量子点材料与其他半导体光敏材料相结合,是实现高性能光伏技术的重要技术路线。

(3)高性能激光光源应用:激光技术是现代光学发展的重要技术之一,在空间通信、测量、陀螺仪和军事方面都有重要的应用。量子点的光谱连续可调性和高效率的发光性能,是其成为下一代新型激光器的材料的核心优势。同时,量子点较低的合成制备成本,也将积极促进激光器的微型化、民用化的发展。基于量子点的光泵浦激光器和电泵浦激光器均是领域的研究前沿。

(4)单光子光源应用:在量子信息、量子通信技术快速发展的今天,单光子光源是量子信息器件必不可少的部件之一。由于单颗粒量子点可以近似为理想的二能级系统,在单光子源领域有独特的优势。目前,发展最为成熟的单光子源器件就是通过外延生长等方式制备的自组装量子点。而随着量子点的溶液制备和加工技术的发展,未来有望以低成本的溶液合成量子点作为单光子源,制备多波段、高效率、低成本的量子点单光子源阵列,为实现量子计算和量子通信提供新技术。该研究团队利用超导纳米材料制备了一种新型的量子点,并通过改变量子点的结构来调控量子点的发光特性。

(编辑:聊城站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章