MySQL数据库中多层索引怎样构建和操作
发布时间:2023-04-18 14:44:59 所属栏目:MsSql教程 来源:
导读:这篇文章主要介绍“MySQL数据库中多层索引怎样创建和操作”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MySQL数据库中多层索引怎样创建和操作”
这篇文章主要介绍“MySQL数据库中多层索引怎样创建和操作”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MySQL数据库中多层索引怎样创建和操作”文章能帮助大家解决问题。 一、多层索引 1.创建 环境:Jupyter import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'], ['一季度','二季度','三季度','四季度']], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']]) display(a) 2.设置索引的名称 import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'], ['一季度','二季度','三季度','四季度']], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']]) a.index.names=['年度','季度'] a.columns.names=['大类','小类'] display(a) 3.from_arrays( )-from_tuples() import numpy as np import pandas as pd index=pd.MultiIndex.from_arrays([['上半年','上半年','下半年','下半年'],['一季度','二季度','三季度','四季度']]) columns=pd.MultiIndex.from_tuples([('蔬菜','胡萝卜'),('蔬菜','白菜'),('肉类','牛肉'),('肉类','猪肉')]) a=pd.DataFrame(np.random.random(size=(4,4)),index=index,columns=columns) display(a) 4.笛卡儿积方式 from_product() 局限性较大 import pandas as pd index = pd.MultiIndex.from_product([['上半年','下半年'],['蔬菜','肉类']]) a=pd.DataFrame(np.random.random(size=(4,4)),index=index) display(a) 二、多层索引操作 1.Series import pandas as pd a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']]) print(a) print('---------------------') print(a.loc['a']) print('---------------------') print(a.loc['a','c']) import pandas as pd a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']]) print(a) print('---------------------') print(a.iloc[0]) print('---------------------') print(a.loc['a':'b']) print('---------------------') print(a.iloc[0:2]) 2.DataFrame import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'], ['一季度','二季度','三季度','四季度']], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']]) print(a) print('--------------------') print(a.loc['上半年','二季度']) print('--------------------') print(a.iloc[0]) 3.交换索引 swaplevel( ) import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'], ['一季度','二季度','三季度','四季度']], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']]) a.index.names=['年度','季度'] print(a) print('--------------------') print(a.swaplevel('年度','季度')) 4.索引排序 sort_index( ) level:指定根据哪一层进行排序,默认为最层 inplace:是否修改原数据。默认为False import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'], [1,3,2,4]], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']]) a.index.names=['年度','季度'] print(a) print('--------------------') print(a.sort_index()) print('--------------------') print(a.sort_index(level=1)) 5.索引堆叠 stack( ) 将指定层级的列转换成行 import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'], [1,3,2,4]], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']]) print(a) print('--------------------') print(a.stack(0)) print('--------------------') print(a.stack(-1)) 6.取消堆叠 unstack( ) 将指定层级的行转换成列 fill_value:指定填充值。 import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'], [1,3,2,4]], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']]) print(a) print('--------------------') a=a.stack(0) print(a) print('--------------------') print(a.unstack(-1)) import numpy as np import pandas as pd a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'], [1,3,2,4]], columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']]) print(a) print('--------------------') a=a.stack(0) print(a) print('--------------------') print(a.unstack(0,fill_value='0')) (编辑:聊城站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐