加入收藏 | 设为首页 | 会员中心 | 我要投稿 聊城站长网 (https://www.0635zz.com/)- 智能语音交互、行业智能、AI应用、云计算、5G!
当前位置: 首页 > 站长学院 > MySql教程 > 正文

搞懂MySQL Optimizer Trace的神奇功能

发布时间:2023-09-16 15:06:28 所属栏目:MySql教程 来源:
导读:在 MySQL 5.6 以及之后的版本中,设计 MySQL 的大叔贴⼼的为这部分小伙伴提出了一个 optimizer trace 的功能,这个功能可以让我们方便的查看优化器生成执行计划的整个过程,这个功能的开启与关闭由系统变量 op
在 MySQL 5.6 以及之后的版本中,设计 MySQL 的大叔贴⼼的为这部分小伙伴提出了一个 optimizer trace 的功能,这个功能可以让我们方便的查看优化器生成执行计划的整个过程,这个功能的开启与关闭由系统变量 optimizer_trace 决定,我们看一下:
 
mysql> show variables like 'optimizer_trace';
 
+-----------------+--------------------------+
 
| Variable_name   | Value                    |
 
+-----------------+--------------------------+
 
| optimizer_trace | enabled=off,one_line=off |
 
+-----------------+--------------------------+
 
1 row in set (0.01 sec)
 
可以看到 enabled 值为 off,表明这个功能默认是关闭的。
 
小提示:
 
one_line 的值是控制输出格式的,如果为 on 那么所有输出都将在一行中展示,不适合⼈阅读,所以我们就保持其默认值为 off 吧。
 
如果想打开这个功能,必须⾸先把 enabled 的值改为 on,就像这样:
 
1
 
2
 
mysql> SET optimizer_trace="enabled=on";
 
Query OK, 0 rows affected (0.00 sec)
 
然后我们就可以输入我们想要查看优化过程的查询语句,当该查询语句执行完成后,就可以到 information_schema 数据库下的 OPTIMIZER_TRACE 表中查看完整的优化过程。
 
这个 OPTIMIZER_TRACE 表有 4 个列,分别是:
 
QUERY:表示我们查询的语句;
 
TRACE:表示优化过程的 JSON 格式⽂本;
 
MISSING_BYTES_BEYOND_MAX_MEM_SIZE:由于优化过程可能会输出很多,如果超过某个限制时,多余的⽂本将不会被显示,这个字段展示了被忽略的⽂本字节数;
 
INSUFFICIENT_PRIVILEGES:表示是否没有权限查看优化过程,默认值是 0,只有某些特殊情况下才会是 1,我们暂时不关心这个字段的值。
 
完整的使用 optimizer trace 功能的步骤总结
 
步骤一: 打开 optimizer trace 功能 (默认情况下它是关闭的)。
 
1
 
2
 
mysql> SET optimizer_trace="enabled=on";
 
Query OK, 0 rows affected (0.01 sec)
 
步骤二: 输入查询语句。
 
1
 
SELECT    ...;
 
步骤三: 从 optimizer_trace 表中查看上一个查询的优化过程。
 
1
 
SELECT * FROM information_schema.OPTIMIZER_TRACE;
 
步骤四: 可能你还要观察其他语句执行的优化过程,重复上边的第 2、3步。
 
步骤五: 当你停⽌查看语句的优化过程时,把 optimizer trace 功能关闭。
 
mysql> SET optimizer_trace="enabled=off";
 
Query OK, 0 rows affected (0.01 sec)
 
现在我们有一个搜索条件比较多的查询语句,它的执行计划如下:

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc';
 
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
 
| id | select_type | table | partitions | type  | possible_keys              | key      | key_len | ref  | rows | filtered | Extra                              |
 
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
 
|  1 | SIMPLE      | s1    | NULL       | range | idx_key2,idx_key1,idx_key3 | idx_key1 | 403     | NULL |    1 |     5.00 | Using index condition; Using where |
 
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
 
1 row in set, 1 warning (0.00 sec)
 
可以看到该查询可能使用到的索引有3个,那么为什么优化器最终选择了idx_key1而不选择其他的索引或者直接全表扫描呢?这时候就可以通过otpimzer trace 功能来查看优化器的具体工作过程:

mysql> SET optimizer_trace="enabled=on";
 
Query OK, 0 rows affected (0.00 sec)
 
mysql> SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc';
 
Empty set (0.00 sec)
 
mysql> SELECT * FROM information_schema.OPTIMIZER_TRACE\G
 
MySQL 可能会在之后的版本中添加更多的优化过程信息。不过杂乱之中其实还是蛮有规律的,优化过程大致分为了三个阶段:
 
prepare 阶段
 
optimize 阶段
 
execute 阶段
 
我们所说的基于成本的优化主要集中在 optimize 阶段,对于单表查询来说,我们主要关注 optimize 阶段的 "rows_estimation" 这个过程。这个过程深入分析了对单表查询的各种执行方案的成本,对于多表连接查询来说,我们更多需要关注 "considered_execution_plans" 这个过程,这个过程里会写明各种不同的连接方式所对应的成本。反正优化器最终会选择成本最低的那种方案来作为最终的执行计划,也就是我们使用 EXPLAIN 语句所展现出的那种方案。
 
最后,我们为感兴趣的小伙伴展示一下通过查询 OPTIMIZER_TRACE 表得到的输出(我使用#后跟随注释的形式为大家解释了优化过程中的一些比较重要的点,建议用电脑屏幕观看):
 
*************************** 1. row ***************************
 
# 分析的查询语句是什么
 
QUERY: SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc'
 
# 优化的具体过程
 
TRACE: {
 
  "steps": [
 
    {
 
      "join_preparation": {    # prepare阶段
 
        "select#": 1,
 
        "steps": [
 
          {
 
            "IN_uses_bisection": true
 
          },
 
          {
 
            "expanded_query": "/* select#1 */ select `s1`.`id` AS `id`,`s1`.`key1` AS `key1`,`s1`.`key2` AS `key2`,`s1`.`key3` AS `key3`,`s1`.`key_part1` AS `key_part1`,`s1`.`key_part2` AS `key_part2`,`s1`.`key_part3` AS `key_part3`,`s1`.`common_field` AS `common_field` from `s1` where ((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))"
 
          }
 
        ]
 
      }
 
    },
 
    {
 
      "join_optimization": {  # optimize阶段
 
        "select#": 1,
 
        "steps": [
 
          {
 
            "condition_processing": { # 处理搜索条件
 
              "condition": "WHERE",
 
              # 原始搜索条件
 
              "original_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))",
 
              "steps": [
 
                {
 
                # 等值传递转换
 
                  "transformation": "equality_propagation",
 
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
 
                },
 
                {
 
                # 常量传递转换
 
                  "transformation": "constant_propagation",
 
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
 
                },
 
                {
 
                # 去除没用的条件
 
                  "transformation": "trivial_condition_removal",
 
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
 
                }
 
              ]
 
            }
 
          },
 
          {
 
          # 替换虚拟生成列
 
            "substitute_generated_columns": {
 
            }
 
          },
 
          {
 
          # 表的依赖信息
 
            "table_dependencies": [
 
              {
 
                "table": "`s1`",
 
                "row_may_be_null": false,
 
                "map_bit": 0,
 
                "depends_on_map_bits": [
 
                ]
 
              }
 
            ]
 
          },
 
          {
 
            "ref_optimizer_key_uses": [
 
            ]
 
          },
 
          {
 
          # 预估不同单表访问方法的访问成本
 
            "rows_estimation": [
 
              {
 
                "table": "`s1`",
 
                "range_analysis": {
 
                  "table_scan": {
 
                    "rows": 20250,
 
                    "cost": 2051.35
 
                  },
 
                   # 分析可能使用的索引
 
                  "potential_range_indexes": [
 
                    {
 
                      "index": "PRIMARY", # 主键不可用
 
                      "usable": false,
 
                      "cause": "not_applicable"
 
                    },
 
                    {
 
                      "index": "idx_key2",# idx_key2可能被使用
 
                      "usable": true,
 
                      "key_parts": [
 
                        "key2"
 
                      ]
 
                    },
 
                    {
 
                      "index": "idx_key1", # idx_key1可能被使用
 
                      "usable": true,
 
                      "key_parts": [
 
                        "key1",
 
                        "id"
 
                      ]
 
                    },
 
                    {
 
                      "index": "idx_key3", # idx_key3可能被使用
 
                      "usable": true,
 
                      "key_parts": [
 
                        "key3",
 
                        "id"
 
                      ]
 
                    },
 
                    {
 
                      "index": "idx_key_part", # idx_key_part不可用
 
                      "usable": false,
 
                      "cause": "not_applicable"
 
                    }
 
                  ],
 
                  "setup_range_conditions": [
 
                  ],
 
                  "group_index_range": {
 
                    "chosen": false,
 
                    "cause": "not_group_by_or_distinct"
 
                  },
 
                  "skip_scan_range": {
 
                    "potential_skip_scan_indexes": [
 
                      {
 
                        "index": "idx_key2",
 
                        "usable": false,
 
                        "cause": "query_references_nonkey_column"
 
                      },
 
                      {
 
                        "index": "idx_key1",
 
                        "usable": false,
 
                        "cause": "query_references_nonkey_column"
 
                      },
 
                      {
 
                        "index": "idx_key3",
 
                        "usable": false,
 
                        "cause": "query_references_nonkey_column"
 
                      }
 
                    ]
 
                  },
 
                  # 分析各种可能使用的索引的成本
 
                  "analyzing_range_alternatives": {
 
                    "range_scan_alternatives": [
 
                      {
 
                      # 使用idx_key2的成本分析
 
                        "index": "idx_key2",
 
                        # 使用idx_key2的范围区间
 
                        "ranges": [
 
                          "NULL < key2 < 1000000"
 
                        ],
 
                        "index_dives_for_eq_ranges": true,# 是否使用index dive
 
                        "rowid_ordered": false,# 使用该索引获取的记录是否按照主键排序
 
                        "using_mrr": false, # 是否使用mrr
 
                        "index_only": false, # 是否是索引覆盖访问
 
                        "in_memory": 1,
 
                        "rows": 10125,# 使用该索引获取的记录条数
 
                        "cost": 3544.01,# 使用该索引的成本
 
                        "chosen": false,  # 使用该索引的成本
 
                        "cause": "cost" # 因为成本太大所以不选择该索引
 
                      },
 
                      {
 
                      # 使用idx_key1的成本分析
 
                        "index": "idx_key1",
 
                         # 使用idx_key1的范围区间
 
                        "ranges": [
 
                          "'z' < key1"
 
                        ],
 
                        "index_dives_for_eq_ranges": true,# 同上
 
                        "rowid_ordered": false,# 同上
 
                        "using_mrr": false,# 同上
 
                        "index_only": false,# 同上
 
                        "in_memory": 1,
 
                        "rows": 1,# 同上
 
                        "cost": 0.61,# 同上
 
                        "chosen": true# 是否选择该索引
 
                      },
 
                      {
 
                       # 使用idx_key3的成本分析
 
                        "index": "idx_key3",
 
                          # 使用idx_key3的范围区间
 
                        "ranges": [
 
                          "key3 = 'aa'",
 
                          "key3 = 'bb'",
 
                          "key3 = 'cb'"
 
                        ],
 
                        "index_dives_for_eq_ranges": true,# 同上
 
                        "rowid_ordered": false,# 同上
 
                        "using_mrr": false,# 同上
 
                        "index_only": false,# 同上
 
                        "in_memory": 1,
 
                        "rows": 3,# 同上
 
                        "cost": 1.81,# 同上
 
                        "chosen": false,# 同上
 
                        "cause": "cost"# 同上
 
                      }
 
                    ],
 
                    # 分析使用索引合并的成本
 
                    "analyzing_roworder_intersect": {
 
                      "usable": false,
 
                      "cause": "too_few_roworder_scans"
 
                    }
 
                  },
 
                  # 对于上述单表查询s1最优的访问方法
 
                  "chosen_range_access_summary": {
 
                    "range_access_plan": {
 
                      "type": "range_scan",
 
                      "index": "idx_key1",
 
                      "rows": 1,
 
                      "ranges": [
 
                        "'z' < key1"
 
                      ]
 
                    },
 
                    "rows_for_plan": 1,
 
                    "cost_for_plan": 0.61,
 
                    "chosen": true
 
                  }
 
                }
 
              }
 
            ]
 
          },
 
          {
 
            # 分析各种可能的执行计划
 
            #(对多表查询这可能有很多种不同的方案,单表查询的方案上边已经分析过了,直接选取idx_key1就好)
 
            "considered_execution_plans": [
 
              {
 
                "plan_prefix": [
 
                ],
 
                "table": "`s1`",
 
                "best_access_path": {
 
                  "considered_access_paths": [
 
                    {
 
                      "rows_to_scan": 1,
 
                      "access_type": "range",
 
                      "range_details": {
 
                        "used_index": "idx_key1"
 
                      },
 
                      "resulting_rows": 1,
 
                      "cost": 0.71,
 
                      "chosen": true
 
                    }
 
                  ]
 
                },
 
                "condition_filtering_pct": 100,
 
                "rows_for_plan": 1,
 
                "cost_for_plan": 0.71,
 
                "chosen": true
 
              }
 
            ]
 
          },
 
          {
 
            "attaching_conditions_to_tables": {
 
              "original_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))",
 
              "attached_conditions_computation": [
 
              ],
 
              "attached_conditions_summary": [
 
                {
 
                  "table": "`s1`",
 
                  "attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
 
                }
 
              ]
 
            }
 
          },
 
          {
 
          # 尝试给查询添加一些其他的查询条件
 
            "finalizing_table_conditions": [
 
              {
 
                "table": "`s1`",
 
                "original_table_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))",
 
                "final_table_condition   ": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
 
              }
 
            ]
 
          },
 
          {
 
           # 再稍稍的改进一下执行计划
 
            "refine_plan": [
 
              {
 
                "table": "`s1`",
 
                "pushed_index_condition": "(`s1`.`key1` > 'z')",
 
                "table_condition_attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
 
              }
 
            ]
 
          }
 
        ]
 
      }
 
    },
 
    {
 
      "join_execution": { # execute阶段
 
        "select#": 1,
 
        "steps": [
 
        ]
 
      }
 
    }
 
  ]
 
}
 
# 因优化过程文本太多而丢弃的文本字节大小,值为0时表示并没有丢弃
 
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
 
# 权限字段
 
INSUFFICIENT_PRIVILEGES: 0
 
1 row in set (0.01 sec)
 
ERROR:
 
No query specified
 
大家看到这个输出的第一感觉就是这文本也太多了点吧,其实这只是优化器执行过程中的一小部分。
 
如果有小伙伴对使用 EXPLAIN 语句展示出的对某个查询的执行计划很不理解,大家可以尝试使用 optimizer trace 功能来详细了解每一种执行方案对应的成本,相信这个功能能让大家更深入的了解 MySQL 查询优化器。
 
 

(编辑:聊城站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章