解秘大脑信号再现视觉图像
发布时间:2023-05-04 10:09:57 所属栏目:动态 来源:
导读:会不会完全根据大脑信号就能重新设计某人所看见的场景呢?瑞士洛桑联邦理工学院的研究者朝这个方向迈出了重要的一步,他们引入了一种新算法构建的人工神经网络模型,能以令人印象深刻的准确度捕捉大脑动态。该研究发表
会不会完全根据大脑信号就能重新设计某人所看见的场景呢?瑞士洛桑联邦理工学院的研究者朝这个方向迈出了重要的一步,他们引入了一种新算法构建的人工神经网络模型,能以令人印象深刻的准确度捕捉大脑动态。该研究发表在最新一期《自然》杂志上。 这种新颖的机器学习算法——CEBRA植根于数学,可学习神经代码中的隐藏结构。研究人员利用新算法进行了演示。一只老鼠正在观看1960年代的黑白电影片段,其中一名男子跑向一辆打开后备箱的汽车;在另一个屏幕上,人们可以看到由CEBRA计算出的电影重建画面,新构建的电影几乎与原版完全吻合,但有一些轻微的怪异扭曲。 CEBRA从原始神经数据中学到的信息可在解码训练后进行测试。团队已证明他们可以从模型中解码老鼠在看电影时所看到的东西。但CEBRA不仅限于视觉皮层神经元,甚至大脑数据,它还可以用来预测灵长类动物手臂的运动,并重建老鼠在竞技场上自由奔跑时的位置。 用于视频解码的数据由艾伦脑研所提供,大脑信号是通过插入小鼠大脑视觉皮层区域的电极探针,直接测量大脑活动而获得,这些探针被设计成使激活的神经元发出绿光。在训练期间,CEBRA学习将大脑活动映射到特定帧。在以观察到的视觉运动的皮层中产生的不到1%的运动感知神经元数量进行视觉感知测试时,CEBRA表现良好。 CEBRA基于对比学习技术,这是一种学习如何将高维数据排列或嵌入到低维空间的技术。与其他算法相比,CEBRA在重建合成数据方面表现出色,这对于比较算法至关重要。它的优势还在于它能够跨模式组合数据,例如电影功能和大脑数据,并且它有助于限制细微差别,例如由数据收集方式带来的数据变化。因此,我们认为这项技术可以用于医疗保健领域,以帮助改善患者的生活质量。”研究人员补充道。“ (编辑:聊城站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐