加入收藏 | 设为首页 | 会员中心 | 我要投稿 聊城站长网 (https://www.0635zz.com/)- 智能语音交互、行业智能、AI应用、云计算、5G!
当前位置: 首页 > 站长资讯 > 动态 > 正文

机器学习预测热带气旋引起的海表温度响应获成果

发布时间:2023-10-24 12:45:14 所属栏目:动态 来源:
导读:唐丹玲教授及其团队在广州海洋实验室,运用机器学习技术预测热带气旋风泵引起的海温响应方面取得重大进展。

研究人员采用随机森林方法即一种基于机器学习的高效方法构建了一个模型。该模型的目标是预测西北太平洋

唐丹玲教授及其团队在广州海洋实验室,运用机器学习技术预测热带气旋风泵引起的海温响应方面取得重大进展。

研究人员采用随机森林方法即一种基于机器学习的高效方法构建了一个模型。该模型的目标是预测西北太平洋热带气旋(TC)引起的海面温度(SST)冷却的空间结构和时间演变,即风泵过程。在模型的构建过程中,利用了与热带气旋特征和热带气旋经过前海洋状态相关的12个变量作为预测因子。研究结果显示,这一模型能够很好地预测不同强度下热带气旋所产生的冷尾流的时空演变,并成功捕捉到观测的SST响应在不同热带气旋之间的变异。

为了进一步充分地评估以下12个相关联的预测因子在高效地确定预测的最大降温幅度百分比方面的相对重要性,研究人员采用相同的机器学习方法建立了另一个模型。通过对预测因子特征得分的计算,结果表明在考虑降温区域大小时,热带气旋尺度、强度、平移速度以及热带气旋来临前混合层深度和海表温度在确定最大降温幅度方面占主导地位。

“该研究证明机器学习在预测热带气旋引起的SST响应以及评估热带气旋引起的SST冷却过程中的主导因子具有很大潜力。”论文通讯作者唐丹玲表示,其研究方法和结果对于预测热带气旋风暴效应所引起的海洋初级生产的变化具有重要意义,将有助于防范极端事件(如风暴潮)对人和财产的影响。我们认为,这一进程应该继续下去,直到我们达成共识。"他说。"我们必须确保我们的努力不会白费。"

(编辑:聊城站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章